

Surface Mount Glass Passivated Fast Recovery Rectifier

SOD-123FL(eSGA)

Features

- ROHS compliant
- Glass passivated chip
- High forward surge capability
- Meet MSL level 1, per J-STD-020 LF maximum peak of 250 °C
- Solder dip 260 °C / 40S
- Component in accordance to ROHS 2002/95/EC and WEEE 2002/96/WC
- UL recognition, file number E342874

Primary characteristics							
I _{F(AV)}	1A						
V_{RRM}	50V to 1000V						
I _{FSM}	25A						
I _{RM}	5uA						
V _{FM} at I _F =1 A	1.3V						
T _J max.	150 °C						

Applications

Ideal for ac-to-dc bridge full wave rectification suck as SMPS, home applianes, office equipment, indusrial automation applicatios

Mechanical data

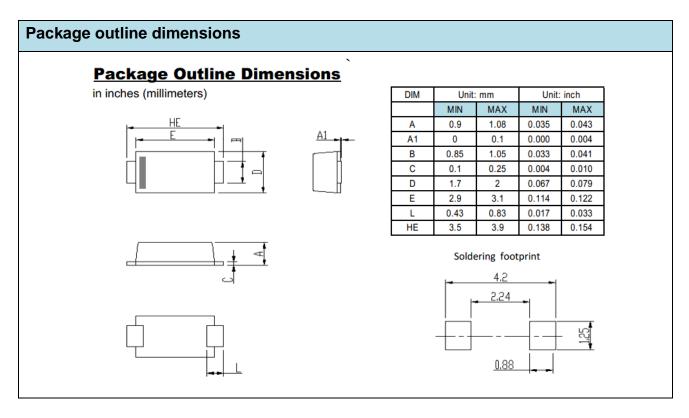
- SOD-123FL(eSGA)
- Epoxy meets UL 94 V-0 flammability rating
- Terminals: Tin plated leads.
- Polarity: As marked.
- Mounting Torque:10cm-kg(8.8 inches-lbs)max.
- Recommended Torque:5.7 cm-kg(5 inches-lbs)

maximum rating (Ta=25°C unless otherwise noted)										
Baramatar		Cum	SOD-123FL(eSGA)							11:0:4
Parameter		Sym	FF1S	FF2S	FF3S	FF4S	FF5S	FF6S	FF7S	Unit
Max. repetitive peak reverse voltage		V _{RRM}	50	100	200	400	600	800	1000	V
Max. RMS reverse voltage		V _{RMS}	35	70	140	280	420	560	700	V
Max. DC blocking voltage		V_{DC}	50	100	200	400	600	800	1000	V
Max. average forward current		I _{F(AV)}	1					Α		
Non-repetitive peak forward surge current 8.3ms single half-sine-wave		I _{FSM}	25					А		
Max. instantaneous forward voltage drop per diode		V _{FM}	1.3 (1A)					V		
Max. instantaneous reverse current	Ta=25 °C		5							
at rated DC blocking voltage	Ta=125 °C	I _{RM}	50						μA	
Operating junction temperature		TJ	-55 ~ + 150						°C	
Storage temperature		T _{STG}	-55 ~ + 150					°C		
Maximum reverse recovery time (Note 2)		trr		15	50		250	50	00	nS
			70							
Typical thermal resistance (Note 1)		R JC	32						oC/W	
			1							1

Notes:

- 1 The thermal resistance from junction to ambient, case or mount, mounted on P.C.B with 5x5mm copperpads, 2OZ, FR4 PCB
- 2. Measured at 1 MHz and Applied Reverse Voltage of 4.0 V D.C

Surface Mount Glass Passivated Fast Recovery Rectifier


Ordering information (Example)							
PREFERRED	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY DELIVERY MO				
FF7S							

Typical characteristics 8 25 1.5 Peak Forward Surge Current (A) Average Forward Rectified Current 20 1.25 1.0 15 0.75 10 0.5 Tj=Tj max 5 8.3ms Single Half Sine-Wave 0.25 0 75 100 125 10 100 Mount Temperature (°C) Number of Cycles at 60Hz Figure 2.Maximum Non-Repetitive Figure 1.Forward Current Derating Curve Peak Forward Surge Current 100 10000.000 Tj=25*℃ 25°C 1000.000 f=1.0MHZ ----125°C ---150°C Junction Capacitance (pF) 100.000 (ng) 100.0 Vsig=50mVp-p 1 Reverse Voltage (V) Percent of Rated Peak Reverse Voltage (%) Figure 3. Typical Reverse Characteristics Figure 4. Typical Junction Capacitance

Rev. A1 P2/3

Surface Mount Glass Passivated Fast Recovery Rectifier

Golden SEMI Inc. - Legal Notice

Disclaimer – All data and specifications are subject to changes without notice

GOLDEN SEMI Inc, it's affiliates, agents, distributors and employees neither accept nor assume any responsibility for errors or inaccuracies. All data and specifications are intended for information and provide a product description only. Electrical and mechanical parameters listed in GOLDEN SEMI data sheets and specifications will vary dependent upon application and environmental conditions. GOLDEN SEMI is not liable for any damages occurred or resulting from any circuit, product or end-use application for which it's products are used. GOLDEN SEMI products are not intended or designed for use in life saving or sustaining apparatus and purchase of any GOLDEN SEMI products automatically indemnifies GOLDEN SEMI against any claims or damages resulting from application malfunction